
Reliable Execution
of MPI Applications

Andrew Lumsdaine
Brian Barrett
Jeff Squyres

Computer Science Department
Indiana University
Bloomington, IN

Overview

l LAM/MPI background
l Wherefore fault tolerance / reliability?
l Fault tolerance currently provided by LAM/MPI
l Behavior of MPI in presence of failure
l Present and future work
l Conclusions

LAM/MPI background

l Author history:
– Ohio Supercomputing Center
– University of Notre Dame
– Indiana University

l http://www.lam-mpi.org/

LAM/MPI Background

l Open source implementation of MPI
l Contains all of MPI-1 and most of MPI-2

– Dynamic processes
– C++ bindings
– I/O
– One-sided communication

l Runs on just about any POSIX system

LAM/MPI Architecture

l Layered on Trollius
– Parallel RTE developed before the MPI standard

Trollius Layer

MPI Program

MPI Layer

Operating System

Trollius and MPI

l Trollius provides a high level of infrastructure
– Uses a small user-level daemon running on each

node: the lamd
– Reliable point-to-point communication layer

(UDP)
– Process control environment
– Remote I/O with Unix-like semantics
– Minimal fault detection
– Communication tracing system

Trollius Layer

MPI Program

MPI Layer

Operating System

Trollius and MPI

l MPI layer uses many of the services
provided by Trollius
– Uses Trollius’ out-of-band communication layer

for meta data
– Process control to launch and and reliably take

down jobs
– Job status information maintained by daemons

l Optionally uses Trollius layer for MPI
communication (lamd RPI)

Trollius Layer

MPI Program

MPI Layer

Operating System

Why Fault Tolerance?

l COTS clusters are clearly the “Big Thing”
l Failures becoming common as code moves

from “Big Iron” to large clusters
– Hardware failure
– OS failure
– Kicking out the power cord

l Clusters growing: 1000’s of nodes desirable
l Losing entire job because one node failed

costly in time and CPU cycles

What Do We Want?

l Ability to “keep going” after a failure
l Failures we do want to recover from:

– Unresponsive nodes
– Network link failures

What Do We Not Want?

l Failures we do not want to recover from:
– Data integrity (memory/transmission errors, etc.)
– Program errors (seg faults, divide by 0, etc.)
– Byzantine errors

l These are considered to be user problems

Approaches to Reliability

l Both application and middleware are
involved

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

Parallel Application

Middleware (MPI)

Approaches to Reliability

l On failure, state may be lost

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

Parallel Application

Middleware (MPI)

Approaches to Reliability

l On failure, state may be lost

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

CPU

APP

Parallel

Middleware (MPI)

Application

Middleware (MPI)

Approaches to Reliability

l Use a stateless programming model
l Assist application in reconstructing state
l Periodically save state (checkpoint)
l Replicate state

l These approaches imply requirements on
the application and on the middleware

Goals for LAM/MPI Reliability

l Use a stateless programming model: today
l Assist application in reconstructing state: RSN
l Periodically save state (checkpoint): fall
l Replicate state

l Need to be cognizant of what approach the
application is able / willing to use

Goals for LAM/MPI Reliability

l Ensure stability of MPI layer and LAM RTE in
the presence of failures

l Detect failures and notify MPI application
l Provide status information to MPI programs
l Recover from transient failures
l User codes remain portable

– Can compile/link to other MPI implementations*
– …but will not utilize reliability extensions

l Provide library for reliable MPI operations

Existing Fault Tolerance in LAM

l Trollius layer can detect failure of a remote
node

l Minimal recovery ability from node failure
– Node is removed from LAM universe
– Running MPI application is terminated

foo foo foofoo

Existing Fault Tolerance in LAM

l Trollius layer can detect failure of a remote
node

l Minimal recovery ability from node failure
– Node is removed from LAM universe
– Running MPI application is terminated

Existing Fault Tolerance in LAM

l Trollius layer can detect failure of a remote
node

l Minimal recovery ability from node failure
– Node is removed from LAM universe
– Running MPI application is terminated
– Next mpirun recognizes smaller universe

foo foo foo

Infrastructure Failure Detection

l Detects failures during normal communication
l Uses “ping” messages to test data links that

have not been used recently
l If out-of-band channel is broken between two

nodes, remote node considered dead
l Daemons are fully connected (UDP); each

individually notice when one goes down

MPI Communicators and Faults

l MPI communicators are static environments
– A fixed set of MPI processes
– If a process in a communicator dies, many MPI

operations become undefined (e.g., collectives)

MPI_COMM_WORLD

Surviving a Process Failure

l Possible implement a program that can
survive failures during a MPI job
– Use MPI_COMM_WORLD size of one
– Use MPI_COMM_SPAWN to launch worker jobs
– Pair-wise communicators
– Spawned processes can die and rest will continue

l Limited solution – must be carefully written
with MPI-2 dynamic process control

l Example included with LAM/MPI distribution

Process Failure Example

l % ./manager

Manager

MPI_COMM_WORLD

Process Failure Example

l % ./manager

Manager

MPI_COMM_WORLD

Worker Worker

comm1 commN……

Process Failure Example

l % ./manager

Master

MPI_COMM_WORLD

Worker Worker

comm1 commN……

Process Failure Example

l % ./manager

Master

MPI_COMM_WORLD

Worker Worker

comm1 commN……

Process Failure Example

l % ./manager

Master

MPI_COMM_WORLD

Worker

comm1

……

Current Work

l Improve infrastructure for fault detection
– More reliable detection of faults
– LAM RTE behaves correctly in presence of faults

l Implement scheme for node to be notified of
another node’s failure

l Audit code for proper behavior of LAM
(especially MPI layer) in presence of faults

l Reliability library

Current Work

l Asynchronous MPI notification of process failure
l Define behavior of MPI layer in presence of

faults
l Complete code audit and testing of LAM
l Consider potential recovery from transient failure
l Model of integration into an application

Infrastructure Fault
Detection Improvements

l Improve current “least recently used”
algorithm for fault detection by introducing
topology-based testing

l Allow nodes to notify neighbor nodes of a
detected fault, reducing time spent waiting
for an NACK from a dead node

l Improve handling of data structures once a
node is dead (in order to allow recovery later)

Infrastructure Fault
Detection Improvements (cont.)

l mpirun needs updating to perform consistently
in presence of faults
– Currently, mpirun may hang if fault occurs before

local lamd notices
– mpirun’s behavior depends on when failure occurs

l Two separate conditions: before and after all processes
finish MPI_INIT

l Allow user to specify whether to continue or abort

l Other LAM utilities must be tested as well

Interacting with the Application

l Detecting a fault useless unless we notify the
MPI programs about the fault

l Asynchronous notification ideal – something
similar to a signal handler

l Options:
– Use MPI attribute on MPI_COMM_WORLD to

register a callback function for faults
– Add a LAM-specific function to register a callback

function

Application Programming Model

l Pair-wise communicators
– When one process dies, can discard all

communicators that it is in
– All other processes still have healthy

communicators

foo

foofoo

Application Programming Model

l Pair-wise communicators
– When one process dies, can discard all

communicators that it is in
– All other processes still have healthy

communicators

foo

foofoo

Application Programming Model

l Pair-wise communicators
– When one process dies, can discard all

communicators that it is in
– All other processes still have healthy

communicators

foofoo

Application State

l Application can maintain N-way
communicators

l On failure, contents of wounded
communicator are used to make new one

l Requires COMM_FREE, COMM_SPLIT to
work with wounded communicator

Is Anybody Out There?

l In order to properly recover from a fault, a
process must know who is still alive

l Possible ways to implement data retrieval:
– Special attribute on MPI_COMM_WORLD that

will return list of processes who are still alive
– Special attribute on MPI_COMM_WORLD that

will return list of processes who died
– Additional, non-portable, function calls to obtain

the lists of information

Is Anybody Out There? (cont.)

l Using attributes:
– MPI-portable
– A well-written program can still compile and run

under other MPI implementations
l Using LAM-specific functions

– Could be portable with #if statements, and
therefore equivalent to attributes

– Compile-time decision vs. run-time decision

MPI and Faults

l Nothing said about fault tolerance in the MPI
standard
– Deliberate choice – hard to define
– Behavior of all MPI functions and objects must be

specified in order to ensure programs work “as
expected” in presence of faults

l Goal: Specification for fault tolerance in LAM
will still comply with MPI standard

l Exact semantics and functionality still being
researched

MPI Point-to-Point Operations

l Point-to-point operations involving a “down”
process must fail
– LAM will be able to continue correctly
– Will gracefully fail and return an error

l Point-to-point operations to healthy
processes in a “wounded” communicator will
succeed

Collective Operations

l Collectives on a communicator involving a
“dead” process cannot succeed
– Fail the entire collective
– Possible for unexpected success with a failure

l If a process completes its part in a collective operation
and then fails, it is possible that not everyone will have
finished the collective yet

l The collective will still finish correctly

l Lots of bookkeeping when using a pair-wise
communicator model

Reliability Library

l Absorb the burden of programming model
l Construct and maintain the pair-wise

communicators
– Give the illusion of communicators with many

members
– Perform the bookkeeping necessary for collective

operations
– Re-form wounded communicators when a

process fails

Reliability Library

l Sits between user program and MPI library

Trollius Layer

MPI Program

MPI Layer

Operating System

Reliability library

Checkpoint/Restart

l Joint project with LBNL
l LBNL implementing kernel-level checkpoint

restart for single processes
l Integrating with LAM/MPI to checkpoint

LAM/MPI jobs
l Transparent to user
l Prototype planned for end of summer

Conclusions

l Several approaches to reliability (state recovery)
l Application and middleware interact accordingly
l LAM/MPI

– Supports some reliability modes
– Infrastructure improvements in progress
– MPI layer improvements being studied
– Checkpoint/restart under development
– Reliability library under development

l Applications welcome!

